LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER – NOVEMBER 2015

ST 3817 - STATISTICAL QUALITY CONTROL

Date : 07/11/2015 Time : 09:00-12:00

PART A

Max.: 100 Marks

Answer ALL the questions:

1. What are chance and assignable causes of variation?

Dept. No.

- 2. How will you interpret a control chart?
- 3. When do you prefer S chart to R chart?
- 4. Write the need for CUSUM chart.
- 5. Explain process capability.
- 6. State any two advantages of multivariate control chart.
- 7. Mention any two uses of an OC curve for control charts.
- 8. What are the uses of acceptance sampling?
- 9. What is an average run length?
- 10. Define natural tolerance limits.

PART B

Answer any FIVE questions:

- 11. Explain the OC function and average run length calculation of the fraction nonconforming control chart.
- 12. What are the various patterns in the control chart?
- 13. The following table gives the number of non-conformities observed in 16 successive samples of 100 printed circuit boards. Set up an appropriate control chart to find statistical control.

Sample no.	1	2	3	4	5	6	7	8
Number of non-conformitites	21	24	16	12	15	5	28	20
Sample no.	9	10	11	12	13	14	15	16
Number of non-conformitites	31	25	20	24	16	19	10	16

- 14. Describe the concept of geometric moving average control chart.
- 15. A process is in statistical control with $\overline{X} = 41.5$, $\overline{R} = 2.5$ and n = 3. Specifications are 40 ±5. The quality characteristic is normally distributed.
 - a. Estimate the potential capability (b) estimate the actual capability and obtain CPM.
- 16. Explain the acceptance sampling problem with its advantages and disadvantages.
- 17. Explain the double sampling plan and obtain the expression for AOQ and ATI.
- 18. Obtain the acceptance and rejection lines of a sequential sampling plan for attributes. How are the OC and ASN values obtained for this plan?

(5 X 8 = 40)

(10 X 2 = 20)

PART C

Answer any TWO questions:

- 19. a. Obtain the control limits for \overline{X} and R charts.
 - b. The data in the following table were collected from a process manufacturing power supplies. The variable of interest is output voltage and n = 5.

Sample	1	2	3	4	5	6	7	8	9	10
number										
\overline{X}	103	102	104	105	104	106	102	105	106	104
R	4	5	2	11	4	3	7	2	4	3
Sample number	11	12	13	14	15	16	17	18	19	20
\overline{X}	105	103	102	105	104	105	106	102	105	103
R	4	2	3	4	5	3	5	2	4	2

- (a) Compute the control limits for the future production.
- (b) Assume that the quality characteristic is normally distributed. Estimate the process standard deviation.
- (c) What are the 3-o natural tolerance limits of the process?
- (d) What would be your estimate of the process fraction nonconforming if the specifications on the characteristics were 103 ± 4?
 (6 + 2 + 2 + 5)
- 20. (a) Explain the method of tabular CUSUM for monitoring the process mean. (8)
 - (b) Prepare a tabular CUSUM for the following data with $\mu = 100$, K = 2, H = 10 X_i values are 107, 102, 108, 96, 110, 112. (6)
 - (c) Repeat the calculations with a headstart of H/2 = 5. What is your conclusion now? (6)
- 21. (a) Set up an EWMA control chart for the process mean with the target value $\mu_0 = 15$, $\sigma = 1$, $\lambda = 0.2$ and L = 3 to the data given below and interpret the result.

Subgroup i	1	2	3	4	5	6	7	8	9	10	11	12
Xi	13	14	11	12	15	13	14	14	18	17	15	16

(10)

- (b) Draw the OC curve for a single sampling plan n = 100 and c = 2. Also obtain the expressions for AOQ and ATI after rectification. (10)
- 22. Explain the DMAIC procedure in detail.

(5)

(2 X 20 = 40)

2